Questions on Momentum MS

1. Momentum

Use of $p=m v(\mathbf{1})$
Total momentum $=0.32 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$ or $\mathrm{Ns}(\mathbf{1}) \quad 2$
Velocity
Use of conservation of momentum (1)
$0.062 \mathrm{~m} \mathrm{~s}^{-1}$ [Allow e.c.f. from wrong first answer] (1)
East/in same direction as B moved originally (1) 3
[Only award last mark if momenta subtracted in first part]
2. $30 \mathrm{~m} \div(5 \times 0.62 \mathrm{~s})$
$=9.7 \mathrm{~m} \mathrm{~s}^{-1}$
($7000 \mathrm{~kg} \times 9.7 \mathrm{~m} \mathrm{~s}^{-1}$) [allow $10 \mathrm{~m} \mathrm{~s}^{-1}$ as e.c.f.]
$=68000\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right)$
Momentum before $=$ momentum after
$\left(7000 \mathrm{~kg} \times 9.7 \mathrm{~m} \mathrm{~s}^{-1}\right)+0=(7000 \mathrm{~kg}+5000 \mathrm{~kg}) \times v$
$v=\left(7000 \mathrm{~kg} \times 9.7 \mathrm{~m} \mathrm{~s}^{-1}\right) \div(12000 \mathrm{~kg})$
$=5.7 \mathrm{~m} \mathrm{~s}^{-1}$ [allow 5.8 if e.c.f. of $10 \mathrm{~m} \mathrm{~s}^{-1}$]
Force $=$ change in momentum \div time
$=7000 \mathrm{~kg} \times\left[9.7 \mathrm{~m} \mathrm{~s}^{-1}-5.7 \mathrm{~m} \mathrm{~s}^{-1}\right] \div 0.30 \mathrm{~s}$
$=93000 \mathrm{~N}$ [98 000 N if $10 \mathrm{~m} \mathrm{~s}^{-1}$ used]
3. Experiment

2 light gates
(1)

Gate gives time trolley takes to pass [not just 'the time']
(1)

Speed = length of 'interrupter'/time taken
(1)

OR
2 ticker timers
(1)

Dots at known time intervals
(1)

Speed $=$ length of tape section/time taken
3
[ruler + clock could obtain third mark only, specifying a length/time]
Total momentum of trolleys
Zero (1)
It was zero initially or momentum is conserved [consequent]
(1)

2

Speed v of A

Use of momentum $=$ mass \times velocity (1)
Use of mass \times speed (A) $=$ mass \times speed (B)
(1)
$1.8 \mathrm{~m} \mathrm{~s}^{-1}$ [ignore -ve signs] (1)

Zero

Speed of alpha particle/radium nucleus and directions of travel
Alpha particle because its mass is smaller/lighter
So higher speed for the same (magnitude of) momentum
OR N3 argument
Opposite directions/along a line 1
5. Momentum of driver:

Correct use of $p=m v$ [OR with numbers] (1)

Average resultant force:

$$
\begin{array}{ll}
\text { Correct choice of } F \times t=\Delta p & \text { OR } \\
F \times 0.07(\mathrm{~s})=1500(\mathrm{~N} \mathrm{~s}) & \\
=21 \mathrm{kN} & F=50 \times 429 / 50 \times 30 / 0.07(\mathbf{1}) \\
=21 \mathrm{kN}(\mathbf{1}) \tag{3}
\end{array}
$$

[Ignore sign of answer]
Why resultant force is not the same as force exerted on driver by seatbelt:
Air bags /floor/friction/seat/steering wheel (1)
[Named force other than weight/reaction]
6. Mass of head of mallet

Selecting density x volume (1)
Correct substitutions (1)
Mass $=1.15$ (kg) [3 significant figures, minimum] (1)
3
Momentum change
$p=m v$ used (1)
$\Delta p=1.15$ or $1.2 \mathrm{~kg}(4.20+0.58) \mathrm{m} \mathrm{s}^{-1} \mathbf{(1)}$
$=5.50 / 5.74 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} / \mathrm{N} \mathrm{s}$ (1)
3

Average force
Their above / 0.012 s (1)
$F=458 / 478 \mathrm{~N}$ [e.c.f. Δp above] (1) 2
Value for force
Handle mass/weight/ head weight/force exerted by user (handle)
neglected (1)
Effectiveness of mallet with rubber head
Δt goes up/ Δp goes up (1)
\Rightarrow less force, less effective/more force, more effective [consequent] (1) 2
$5.50 / 5.74 \mathrm{~kg} \mathrm{~m} \mathrm{~s} / \mathrm{Ns}(1)$
less force, less effecive/more force, more effective [consequent] (1)
7. (a) Newton's Second Law of Motion
(The) force (acting on a body) is proportional/equal to the rate of (1) change of momentum (1)
and acts in the direction of the momentum change [accept symbols if all correctly defined for the first of these marks] [ignore any information that is given that is not contradictory]
(i) Calculate the mass

Correct calculation for volume of air reaching tree per second
[Do not penalise unit error or omission of unit] (1)
Correct value for mass of air to at least 3 sig fig [246 kg . No ue.] (1)
[If $1.23 \times 10 \times 20=246 \mathrm{~kg}$ is seen give both marks.
Any order for the numbers]
Example
$20 \mathrm{~ms}^{-1} \times 10 \mathrm{~m}^{2}=200 \mathrm{~m}^{3}$
$1.23 \mathrm{~kg} \mathrm{~m}^{-3} \times 200 \mathrm{~m}^{3}=246 \mathrm{~kg}$
(ii) Calculate the momentum

Answer: [$\left(246 \mathrm{~kg} \times 20 \mathrm{~m} \mathrm{~s}^{-1}=\right) 4920 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$]
[Accept ($\left.250 \mathrm{~kg} \times 20 \mathrm{~m} \mathrm{~s}^{-1}=\right) 5000 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$. Accept $4900 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$. (1) 2 Ecf value for mass. Ignore signs in front of values.]
(iii) Magnitude of the force

Answer: [F $=4920 \mathrm{~N}$ or 5000 N or 4900 N.$]$
[Ecf value from b(ii). Ignore signs in front of values] (1) 2
8. Definition of linear momentum:

Mass \times velocity [Words or defined symbols; NOT $f t$ (1) 1
Newton's second law:
Line 3 only (1) 1
Newton's third law:
Line 2 OR 1\& 2 (1) 1
Assumption:
No (net) external forces/no friction/drag (1)
In line 3 (he assumes the force exerted by the other trolley is the resultant force) [Only if $1^{\text {st }}$ mark earned] (1) 2
Description of how it could be checked experimentally that momentum is conserved in a collision between two vehicles:

Suitable collision described and specific equipment to measure velocities [e.g. light gates] (1)
Measure velocities before and after collision (1)
How velocities calculated [e.g. how light gates used] (1)
Measure masses / use known masses/equal masses (1)
Calculate initial and final moment a and compare OR
for equal trolleys in inelastic collision, then $v_{1}=1 / 2 v_{2}(\mathbf{1}) \quad$ Max 4
9. Calculation of resultant force:

$$
\begin{aligned}
& {\left[a=(v-u) / t=16 \mathrm{~m} \mathrm{~s}^{-1}[(4 \times 60) \mathrm{s}]\right.} \\
& \quad=0.0666 \mathrm{~m} \mathrm{~s}^{-2} \\
& \left.\quad F=m a=84000 \mathrm{~kg} \times 0.0666 \mathrm{~m} \mathrm{~s}^{-2}=5600 \mathrm{~N}\right]
\end{aligned}
$$

OR

Use of $\frac{(v-u)}{t} \quad$ use of $m v$
Use of $F=m a \quad$ use of $\frac{m v}{t}$
(1)

5600 N
5600 N
(1) 3

Free-body force diagram:
Diagram [truck can be just a blob] showing:

$823200-840000 \mathrm{~N}$ down	
same as down	up
11200 N	either way
correct resultant	to left

[Ignore friction. Each extra force -1]
Calculation of average power:

$$
\begin{aligned}
& \text { Power }=\mathrm{KE} \text { gained } / \text { time }=1 / 2 \mathrm{mv}^{2} / \mathrm{t} \quad \mathrm{OR} \quad \mathrm{KE}=3.84 \times 10^{8} \mathrm{~J} \\
& =3.84 \times 10^{8} \mathrm{~J} /(4 \times 60) \mathrm{s} \\
& =1.60 \times 10^{6} \mathrm{~W} \quad[\mathrm{OR} \mathrm{~J} \mathrm{~s}
\end{aligned}
$$

Other credit-worthy responses:
$1 / 2 m v^{2}$
Fv
$\frac{F d}{t}$
$\frac{1}{2} \times \frac{3 \times 10^{6} \times 16^{2}}{240} \quad 3 \times 10^{6} \times 0.666 \times 8 \quad \frac{3 \times 10^{6} \times 0.666 \times 1920}{240}$
[e.c.f. 0.666 and 1920
possible]
$1.6 \times 10^{6} \mathrm{~W}$
$1.6 \times 10^{6} \mathrm{~W}$
$1.6 \times 10^{6} \mathrm{~W}$
(1)
(1)
(1)
Calculation of average current:

$$
P=I V=I \times 25000 \mathrm{~V}=1.60 \times 10^{6} \mathrm{~W} \quad \text { Use of } P=I V \quad 2
$$

